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1. INTRODUCTION 

When we type the word “software problem” into any Internet search engine, we 
can easily come up with dozens of articles reporting the impact of software problems in 
our lives, such as the malfunctioning of the Miele G885 SC dishwasher, worldwide recall 
of the BMW 745i sedan, the shut down of Southern California's airspace due to a 
software glitch leaving controllers without maps showing terrain and airspace boundaries 
on their radarscopes, the loss of an Ariane 5 rocket and its payload satellite, and the loss 
of life due to friendly fire by the Patriot missile defense system. Software is ubiquitous, 
and software errors affect everybody. A study sponsored by the National Institute of 
Standard and Technology (NIST) in 2001 found that the annual cost of software errors to 
the U.S. economy is approximately $59.5 billion, which is about 0.6 percent of the gross 
domestic product [1]. Moreover, some of these errors, particularly those in software-
intensive reactive systems, may have catastrophic consequences.  

Reactive systems (or subsystems) are systems that perform an ongoing and often 
never-ending computation, in which each invocation uses information generated by 
previous invocations.1 Examples of reactive systems include all kinds of controllers. In 
contrast, transformational systems (or subsystems) are those in which the result of an 
invocation (call) does not depend on previous invocations, such as a square root method 
or a Fast Fourier Transform (FFT) method.  

The activities for assuring the correctness of reactive systems reside within the 
Validation and Verification (V&V) process. According to the Guide to the Software 
Engineering Body of Knowledge [2],   

The V&V process determines whether or not products of a given 
development or maintenance activity conform to the requirement of that 
activity, and whether or not the final software product fulfills its intended 
purpose and meets user requirements. Verification is an attempt to ensure 
that the product is built correctly, in the sense that the output products of 
an activity meet the specifications imposed on them in previous activities. 
Validation is an attempt to ensure that the right product is built, that is, the 
product fulfills its specific intended purpose. 

V&V traditionally relies on manual examination of software requirements and 
design artifacts and the systematic or random testing of target code. As software-
intensive systems become increasingly complex, traditional V&V techniques are 
inadequate for locating the subtle errors in the software.  

Claims have been made that the use of formal methods will help improve the 
quality of software [3, 4]. Formal Validation & Verification (FV&V) of reactive systems 
has received considerable academic attention during the last three decades. Nevertheless, 
                                                 
1 A reactive system is a system that changes its actions, outputs and conditions/status in response to stimuli 
from within or outside it. It is an event-driven or control-driven system continuously having to react to 
external and/or internal stimuli; that is, the system exhibits non-terminating behavior and reaction to 
stimulus provided by the environment. 
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FV&V techniques have not been widely adopted by industry or government even for use 
in safety-critical commercial and defense applications. For example, although NASA has 
heavily invested in FV&V research and development, the agency has not adopted FV&V 
techniques beyond sporadic, almost anecdotal, experimental trials [5-11]. 

There are numerous possible explanations for this lackluster practical acceptance 
of FV&V techniques. Clearly, the absence of an ideal technique that can demonstrate life 
and cost savings has not helped.  A more fundamental problem is that software 
development is a multi-facet process. Each phase of this process has its unique set of 
problems and there will never be a one-size-fits-all solution for all software development 
problems. There is a lack of a clear and common understanding about the effectiveness of 
the spectrum of formal FV&V techniques in different phases of the software development 
process. So, how can one select the right tool for the right job in FV&V?  

In this article, we present a visual tradeoff space, called the FV&V tradeoff 
cuboid, for software engineers to discuss the various tradeoffs (e.g. cost, coverage, etc.) 
between different FV&V approaches in order to select the appropriate techniques for 
V&V. We illustrate the use of the tradeoff space with a discussion of cost and coverage 
tradeoffs among three categories of FV&V techniques: theorem proving, non-execution-
based model checking, and execution-based model checking via the combination of 
runtime verification and automatic test generation. We show, using the cuboid, the pros 
and cons of the three categories of techniques. 

 

2. THE V&V REQUIREMENTS IN THE SOFTWARE LIFE CYCLE 

One can view software development as a set of transformations via the following 
workflows: requirements specification, design, and implementation. Depending on the 
software process model, these transformations may be carried out in a sequential order 
(as in the Waterfall, or Spiral processes), or in an iterative and incremental fashion (as in 
the Unified process). Table 1 shows the input/output of each transformation and the 
corresponding V&V activities.  

Development 
Activities Input Output V&V Activities 

Requirements 
Specification 

Clients’ ideas System/software 
functional and non-

functional 
requirements  

Assure the adequacy, correctness, 
and consistency of requirements; 
develop acceptance test plan and test 
cases 

V
alidation 

Design System/software 
requirements 

Architecture/ 
component 

specification 

Assure the consistency of design 
with requirements, and the adequacy 
of design; develop integration and 
unit test plan and test cases 

Implementation Architecture/ 
Component 
specification 

Target Code Assure the consistency of code with 
design, and the adequacy of the 
implementation, execute the tests as 
planned 

V
erification 
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Table 1. The Life-cycle V&V activities. 
 
Clark et al reported in [3] that the process of specifying requirements formally 

enables developers to gain “a deeper understanding of the system being specified,” and to 
“uncover requirements flaws, inconsistencies, ambiguities and incompletenesses.”  In 
addition, the artifacts produced by enacting the process “can itself be formally analyzed,” 
thus allowing the possibility for some degree of automation of V&V tasks.  

In [12], Berry pointed out that most errors, between 65% and 85%, are introduced 
into the software-intensive reactive systems “during the requirements discovery, 
specification, and documentation stages,” and only about 25% of the errors are 
introduced during the coding stage. Hence, it is most cost effective to apply formal 
methods on requirements validation. Berry further illustrated his point with the following 
figure at the 1998 Monterey Workshop on Engineering Automation for Computer-Based 
Systems. 

 
Figure 1. The perils of requirement analysis 

 

The wavy line between “client ideas” and “Reqs Spec” in Figure 1 represents the 
inherent uncertainty and difficulty in nailing down the correct requirements, while the 
relatively “smooth” arrows from “Reqs Spec” to “Design Spec” and from “Design Spec” 
to “Code” indicate the potential for systematic (and possibly mechanical) transformations 
toward the target system once we have the correct requirements specifications. Figure 1 
also highlights the iterative and incremental nature of the validation process.  

Moreover, as Lutz pointed out is her study of the software errors discovered 
during the integration and testing phase of the Voyager and Galileo spacecraft, the 
majority of the program faults were functional faults, and a large percentage of the 
functional faults were behavioral faults (50% of the safety-related, functional faults in 
Voyager and 38% of safety-related, functional faults in Galileo) [13]. Lutz’s finding 
highlights the difficulties in understanding and implementing behavioral requirements 
correctly. Hence, it pays to invest in FV&V techniques that help validate behavioral 
requirements and detect behavioral errors. 

Client 
ideas 

Reqs 
Spec

Design 
Spec

Code 

< 25%  between 65% and 85% 

errors introduced

Validation Verification 
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We need to separate the FV&V techniques into two categories: the FV&V for the 
Requirements phase and the FV&V for the Design/Code phase. The FV&V techniques 
for the Requirements phase are formal validation techniques. These techniques must 
allow stakeholders to capture the formal requirements (e.g. via simulations) to assure that 
the developer’s cognitive understanding of the requirements matches the formal 
specifications. The FV&V techniques for the Design/Code phase are formal verification 
techniques. These techniques should allow developers to achieve the level of confidence 
that their software satisfies the requirements (functional and non-functional), and should 
effectively locate and explain the cause of errors in faulty design and code.  

 

3. THE FV&V DIMENSIONS 

Let us return to our discussion of the dimensions of the FV&V tradeoff space, 
which is made up of the following three dimensions – specification/validation, 
program/application, and verification. 

 
3.1 THE SPECIFICATION/VALIDATION DIMENSION 

The specification/validation dimension represents the cost, effort and 
effectiveness associated with formal specification. Formal requirements specification is 
the process of capturing requirements and properties for the domain of discourse 
(component, module, or system being designed or inspected) in a machine interpretable 
or executable form. The formal specifications describe what any system that solves the 
real-world problem ought to do.  

The specification/validation dimension deals with the ease of writing formal 
specifications and getting them right, that is, getting them to represent the cognitive intent 
the human owner has or had for this requirement.  This dimension measures cost and 
coverage. Cost is the fiscal cost of creating and validating correct representative formal 
specifications for desired properties. Coverage is the degree to which a given 
specification language can actually be used to capture certain properties; a weak formal 
specification language can only capture simple requirements. For example, the 
specification language known as Propositional Linear-time Temporal Logic (PLTL) is 
known to be star-free regular [14] and cannot therefore formally capture requirements 
that require a stronger formalism, such as requirements that require nontrivial counting. 
In addition PLTL cannot be used to capture requirements that contain real-time 
constraints. 

 
3.1.1 Assertion-based Specification vs. Model-based Specification 

We classify formal behavioral requirements specifications into two categories –
assertion-based specifications and model-based specifications.  

With assertion-based specifications, high-level requirements are decomposed into 
more precise lower-level requirements that are mapped one-to-one to formal assertions. 
For example, we may start with a high-level requirement: 
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R1. The system shall not exceed 75% of its maximum load capacity at runtime. 

and derive the lower-level requirement: 

R1.1 Whenever the system load (L) exceeds 75% of the MaxLoad,  
L must be reduced back to 50% of the MaxLoad within 1 minute and must remain 
at or below 50% of the MaxLoad for at least 10 minutes. 

The requirement R1.1 will, in turn, be mapped to a formal assertion expressed either as a 
Metric Temporal Logic (MTL) [36] assertion: 

Always (L >= 0.75 * MaxLoad Implies 
      (Eventually <=1 min  (Always <=10 min L <= 0.5 * MaxLoad))) 

or as a Statechart assertion [39] shown in Figure 2. 

T

timeoutFire()

NormalWorkLoad

Wait for 1 min

Error
on entry / bSuccess = false;

System.err.println(“Assertion failed!”)

timeroutFire()

For 10 min

L> 
0.75 * MaxLoad

[true] /
oneMinuteTimer.restart();

L<= 
0.5* MaxLoad

[false]

[false]

L<= 
0.5* MaxLoad

[false]

[true]

[true] / 
tenMinuteTimer.restart();

 
Figure 2. A sample Statechart assertion 

With model-based behavioral specifications, a single monolithic formal model 
(either as a state-based system or an algebraic-based system) is created to capture the 
combined expected behavior described by the lower-level requirements.  Note that this 
formal model describes the expected behavior of a conceptualized system from the 
Requirement space. It may differ significantly from the models derived from the system 
in the Design/Code space.  

This paper is concerned with, and also advocates, the assertion-based 
specification approach. Its advantages over the model-based specification approach are 
the following: 

1. Requirements are written by humans and need to be traceable in the formal 
specification. Requirements are indeed traceable in the assertion-based formal 
specification approach because they are represented, one-to-one, by assertions 
(acting as watchdogs for the requirements). 
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A monolithic model specification on the other hand is the sum of all concerns. 
Hence, upon detecting a violation of the formal specification it is difficult to map 
that violation to a specific human-driven requirement.  

2. When a requirement changes, it is harder to adjust the monolithic model without 
affecting behavior related to other requirements. Hence, assertion-based 
specifications have a much lower maintenance cost than the model-based 
counterpart. 

3. Particular assertions can be constructed to represents illegal behaviors, whereas in 
the monolithic model approach the formal model typically only represents “good 
behavior.” 

4. It is much easier to trace the expected/actual behaviors of the target system to the 
required behaviors in the Requirements space with assertion-based specifications 
than with the model-based specifications. The requirements assertions can be used 
directly as input to the verifiers in the verification dimension. 

5. The conjunction of all the assertions becomes a “single” formal model of a 
conceptualized system from the Requirement space, and can be used to check for 
consistency and conflicts in the specifications with the help of computer-aided 
tools. 

 
3.2 THE PROGRAM/APPLICATION DIMENSION 

The program/application dimension deals with the ease of the adaptation of a 
given real-life complex application to a specific FV&V technique.  In an ideal world we 
could use an existing application verbatim for our FV&V technique of choice. In reality 
however this is almost never the case, and an application needs to be modified, truncated, 
or simplified to be considered for FV&V. For example, a model checker such as SPIN 
[30] cannot be used verbatim on a non-trivial C, C++, or Java application; rather, such an 
application needs to go through a process of abstraction before it can be used for 
verification, and hence has a low program coverage and a high program cost.  

 
3.3 THE VERIFICATION DIMENSION 

The verification dimension is the dimension that bridges the specification and 
application dimensions. Verification ensures that the application conforms to the 
specification. Formal verification does so using computer-based techniques and therefore 
requires formal specifications for the requirements as well as an executable target system. 
The verification dimension represents the cost, effort, and effectiveness of verification. 
For example, it is generally accepted that manual (i.e., human-based) testing is costly, 
slow, and error prone; it will therefore be represented as a point whose verification 
dimension highlights the high-cost and low-coverage of manually conducting software 
testing. 
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4.  QUALITATIVE COMPARISON OF FV&V TECHNIQUES FOR 
REACTIVE SYSTEM BEHAVIORS 

The coverage cuboid, shown in Figure 3, represents the coverage-space tradeoff 
between three FV&V techniques. Each point in the solid represents the extent of 
coverage in each dimension provided by a given FV&V technique. Hence, an FV&V 
technique with high coverage (e.g., high specification coverage) is better in that aspect 
than a technique with low coverage.  

Figure 4 is the cost cuboid; it represents the cost-space tradeoff between the three 
FV&V techniques. Each point in the solid represents the cost in each dimension induced 
by a given FV&V technique. Clearly, an FV&V technique with high cost (e.g., high 
verification cost) is worse in that aspect than a technique with a low cost. 

Pro
gram

 C
ove

rag
e                                                   Verification Coverage

EMC

MC, TP

 
 

 

4.1 THEOREM PROVING 
As it name suggests, Theorem Proving (TP) is a formal verification technique that 

uses mathematical techniques to make a convincing argument that a program conforms to 
a formal requirement. FV&V TP’s always require a human driver because the underlying 
problem they are trying to solve is typically undecidable. In addition, the choice of the 
specification language affects the skill level required by the driver. For example, ACL2 
[15] uses Propositional-Logic (PL) specification, a Lisp programming style notation for 
specification, whereas STeP (the Stanford Temporal Prover) [16] uses Propositional 
Linear-time Temporal Logic (PLTL) for specification [17], a language that requires more 
expertise than PL. HOL theorem provers [18] are a family of interactive theorem proving 
systems that use first order logic, which is theoretically as descriptive as PLTL but is 
arguably harder to use when it comes to specification of reactive system requirements. 
Examples of HOL TPs include the NQTHM theorem prover [19], HOL4 [18], Isabelle 
[20], ProofPower [21] and PVS [22], and there were several efforts to embed temporal 
logic in HOL [23-26]. In addition, there are a number of formal methods that can be used 
during the code development phase to allow the verification of target code via TP. For 
example, 

Figure 3. The coverage space Figure 4. The cost space 

Pro
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tio
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t
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1. Using Floyd-Hoare Logic [27,28]: In this method, every programming step has a 
pre-condition, post-condition and an invariant. The verifier is expected to use a 
proof system and check that the post condition follows from the precondition 
while the invariant is valid.  

2. Using Type systems [29]: The verification and validation can be moved to the 
design stage by formally stating the requirements in constructive Logic. The 
programmer, then acts as a mathematician and proves that the requirement is a 
theorem that follows from the domain axioms. The system then extracts the code 
automatically from this proof. Therefore the generated code now automatically 
becomes correct, as the programmer indirectly proved it to be so. 
 

The specification/validation dimension of TP. In order to overcome both the 
undecidable and the intractable nature of the formal logic systems, it is necessary to limit 
the expressiveness of the specification languages in order to have practical TP 
techniques. In general, the more powerful the theorem prover, the more restrictive is its 
specification language. Existing theorem provers have rather weak and hard-to-use text-
based specification languages (mostly based on some form of temporal logic). In contrast, 
it is a common practice for system designers to model and program using visual 
languages. We believe the same motivation applies to formal specification. It is difficult 
for system designers who have a limited knowledge of formal logic to visualize the subtle 
meaning of temporal logic statements in order to validate the correctness of the formal 
specifications.  Consequently, we ranked TP techniques as having low specification 
coverage and high specification cost. 

The program/application dimension of TP. TP techniques work on special 
programming languages tailored specifically for the TP process. Hence it is not possible 
to perform TP on an existing Java or C++ application verbatim. In other words, an 
existing complex application needs to be first translated into a new representation using 
the TP tool’s language of choice. In most safety-critical application, such as NASA 
flight-code, or complex defense applications (e.g., the AEGIS weapon system), the new 
representation will not cover all aspects of the original program; for example, STeP does 
not have nearly the same library support as Java or C++. Consequently, we ranked TP 
techniques as having low program coverage and high program cost. 

The verification dimension of TP. As discussed above, TP is never automatic, and 
requires a high level of expertise on the part of the user in automated reasoning. Even 
with such expertise, it is not guaranteed that the TP process will be completed because of 
the undecidability of the formal logic systems. Nevertheless, when the process does 
complete it provides 100% coverage, that is, no more testing is required for that specific 
specification requirement. Hence, we ranked TP techniques as having good verification 
coverage but high verification cost. 

 
4.2 MODEL CHECKING 

Classical, or non-execution-based, Model Checking (MC) is an algorithmic formal 
verification technique. MC is a push-button verification technique in that once a program 



 9

is set-up for MC and a property (e.g., reachability, safety, liveness, and fairness2) is 
formally captured using the formal specification language of choice, the process requires 
no sophisticated driver.  

The specification/validation dimensions of MC. Contemporary MC techniques are 
limited in the specification dimension. For example, SPIN [30] uses PLTL or Büchi-
automata for requirement specification, resulting is the similar specification coverage and 
cost limitations as TP techniques. Kronos [31] and Uppall [32], on the other hand, use 
timed automata to verify real-time properties specified in computation tree logic (CTL) 
[33]. Both CTL and PLTL are rather weak subsets of full branching time logic (CTL*) 
[34]. Both CTL and CTL* use path operators, making it challenging to formulate correct 
specifications with recursion.  Like the formal specifications in the TP techniques, 
specifications for the MC techniques are text based and difficult to visualize and validate 
by system designers. Unlike TP, MC does not require the detailed assertions (e.g. 
invariants) to help guide the intermediate steps of the proof processes. Hence, we rank 
MC as having low specification coverage and a specification cost slightly lower than the 
TP’s.  

The program/application dimension of MC. Model checking’s greatest limitation 
is typically considered to be the state-space explosion problem, where the size of the 
problem space as seen by the MC grows exponentially as the program under verification 
grows. Consequently, MC is limited to finite-state components and is performance-
constrained by the number of states in that component. For example, a single 32-bit 
integer variable induces effectively 232 states. Consequently, for FV&V of large real-life 
systems there are two options available for MC users: (i) to ignore large parts of the 
system using a process known as abstraction [35], where MC is performed on a small 
abstract model of the original system, (ii) to carve out limited, small, parts of the system 
and perform MC only on those parts. In either case there is a non-trivial effort involved, 
we therefore rank MC as having high program cost. In addition, the artifact that is 
eventually model-checked differs significantly from the original system, being either an 
abstract version or limited portion of the original system. We therefore rank MC as 
having low program coverage and high program cost. 

The verification dimension of MC. The premise of MC is automatic, “push-
button” verification, no special driver required. Also, there is 100% verification coverage 
of the component being verified, if that component is not large. Hence, we rank MC as 
having high verification coverage and low verification cost. 

 
4.3 EXECUTION-BASED MODEL CHECKING 

Runtime Verification (RV) is a verification technique that monitors the runtime 
execution of a system and checks the observed runtime behavior against the system’s 
formal specification. Hence, RV behaves as an automated observer that observes the 

                                                 
2 Reachability refers to the condition that certain states are part of a run. Safety refers to behavior that does 
not (or must not) happen. Liveness refers to conditions like If x happens, then y must happen. Fairness 
refers to condition that certain states should be part of every run. 
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program’s behavior and compares it with the expected behavior per the formal 
specification.  

Some RV tools are the TemporalRover/DBRover [36], PaX[37] and RT-Mac [38] 
that use extensions and variants of PLTL as the specification of choice, and the 
StateRover [39] that uses deterministic and non-deterministic statechart diagrams as its 
specification language.  

Execution-based Model Checking (EMC) is a combination of RV and Automatic 
Test Generation (ATG). With EMC, a large volume of automatically generated tests are 
used to exercise the program or system under test (SUT), using RV on the other end to 
check the SUT’s conformance to the formal specification. 

Some ATG tools that, when combined with RV tools, create an EMC technique 
are the StateRover’s white-box automatic test-generator [40] and NASA’s Java Path 
Finder (JPF) [41]. 

The specification/validation dimension of EMC. Although some early RV tools 
have used limited specification languages such as PLTL [17] and MTL [42], there is 
nothing inherent in the ATG, RV, and EMC techniques that limit the specification 
language.  Indeed, the StateRover’s specification language is Turing equivalent. In 
contrast, no specification language for MC or TP is Turing equivalent. In addition, the 
current state-of-practice considers UML diagrams as easy to use modeling and 
specification languages, rendering UML-based formal specification less costly to perform 
and more powerful than specification languages used by MC and TP techniques. The 
availability of executable code for the formal assertions allows system designers to test 
specifications (via scenario simulation) independent of the prototype design, ensuring 
that the system designers truly understand the required system behavior without being 
tainted by any pre-conceived solutions [43].  Hence, we rank EMC as having high 
specification coverage and low specification cost.   

The program/application dimension of EMC. The premise of RV is that it can be 
used for FV&V of any existing, unmodified Java, C, or C++ system, regardless of its size 
and complexity. We therefore rank EMC as having high program coverage and low 
program cost. 

The verification dimension of EMC. EMC is an execution-based FV&V method - 
both the system under test and the specification are executed in tandem. Consequently, 
there is always a possibility that the ATG did not generate a test sequence that violates a 
requirement. Hence EMC’s verification coverage cannot be 100% and we therefore rank 
EMC as having lower verification coverage then MC or TP. Depending on the level of 
automation of the test-generator, EMC is fully or partially automatic. EMC has a low 
verification cost when using an automatic ATG tool. 

 

5. CONCLUSION 

Clearly, as visually depicted by Figures 3 and 4 there exists no ideal FV&V 
technique. Hence, an organization may need to determine how to best allocate the limited 
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resources it has to fulfill these activities. For example, an organization that chooses TP or 
MC is effectively deciding to favor good verification but for a restricted set of behavioral 
(reactive) requirements, since many behavioral requirements of interest cannot be 
addressed by MC. In addition, a choice of MC will limit the size or detail level of the 
application being verified. EMC on the other hand, when compared with MC and TP, has 
better specification coverage and cost and better program coverage and cost, but inferior 
verification coverage. 

Consequently, one can conclude from Figures 3 and 4 that the choice boils down 
to the choice between to:  

1. Thoroughly verify a limited application against a limited set of requirements with 
a high upfront cost of specification-development and program-adaptation. 

2. Partially verify an entire application as-is, against a wide set of real-life 
requirements. 

This choice might also help explain the lackluster acceptance of FV&V 
techniques by the industry. In the past, MC and TP have been the prominent available 
FV&V techniques, forcing the marketplace to fund verification of limited components 
against limited, often seen as over simplified, requirements. This was not considered as a 
good investment for many in the marketplace.  

Studies of software failures typically point to the importance of correct 
requirements and the difficulties in getting the correct description of these requirements. 
One must start with the correct requirements specifications. Otherwise, it does not matter 
how effective and efficient a verification technique is; it is an exercise in futility to 
formally verify that a system behaves “correctly” according to invalid requirements (i.e., 
built the wrong system). Hence, it is important to select the FV&V techniques that are 
both cost-effective and coverage-effective in the specification/validation dimension. 

We advocate the assertion-based over the model-based approach to V&V for 
requirements specifications because the former allows the system developers to 
modularize their thinking and focus on each property (or sets of properties) in isolation. 
In additions, it is much easier to verify the behavior of the actual system against each 
assertion (or sets of assertions) than comparing the equivalence of two monolithic formal 
models. 
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